Synthesis and X -ray crystal structures of the cyclic oxacarbene complexes $\left[\mathrm{Ru}\left\{\left(\overline{\mathrm{CCH}_{2}}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]\right.$
 ($n=1$ or 2): boat conformation of the 2-oxacyclohexylidene ligand

Roy L. Beddoes, Richard W. Grime, Zafar I. Hussain, Mark W. Whiteley *
Deparment of Chemistry. Universily of Manchester, Manchester MIS OPL, UK

Received 15 May 1996

Abstract

The cyclic oxacarbene complexes $\left[\mathrm{Ru}\left\{\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right)(d \mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ IPF $\left.\mathrm{PF}_{6}\right]\left(\mathrm{dppe}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2} ; n=1.1\right.$ or 2, 2) have been synthesised by reaction of hydroxyalk-1-ynes, $\mathrm{HC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{OH}$ wihh $\left(\mathrm{RuCl}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] / \mathrm{NH}_{4}\left[\mathrm{PF}_{6}\right]$ in refluxing methanol. The X-ray crystal structures of $\mathbf{1}$ and $\mathbf{2}$ reveal essentially vertically orientated carbene ligands with the oxygen directed 'down' away from the cyclopentadienyl ring. Both carbene rings exhibil folded conformations; the five-membered ring of $\mathbf{1}$ adops an envelope configuration whilst the six-membered ring of 2 has a boat conformation.

Keynords: Carbene: Ruthenium; Cyclopentadienyl; Crystal structure

1. Introduction

The potential of the $\mathrm{RuL}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right.$) system ($\mathrm{L}=\mathrm{P}$ donor ligand) to act as an organometallic auxiliary in the regio and stereoselective elaboration of bound organic fragments has been the focus of much recent investigation [1]. A prominem area of this work involves the synthesis, structure and reactions of eationic carbene (CR_{2}), vinylidene ($\mathrm{C}=\mathrm{CR}_{2}$) and allenylidene ($\mathrm{C}=\mathrm{C}=\mathrm{CR}_{2}$) derivatives [2]. Structural studies reveal that in complexes of symmetrical auxiliaries $\mathrm{RuL}_{2}(\eta$ $\mathrm{C}_{5} \mathrm{H}_{5}$) (both L identical), carbene and allenylidene ligands adopt a vertical orientation in which the ligand R substituents lie approximately in the pseudo mirror plane of the $\mathrm{RuL}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ moiety whilst vinylidene ligand substituents are directed orthogonal to this plane in a he izontal orientation [2]. This successive twisting through 90° (carbene (vertical) \rightarrow vinylidene (horizontal) \rightarrow allenylidene (vertical)) observed experimentally, is consistent with theoretical investigations [3] and required to provide optimal interaction between the vacant p orbital on C_{a} of the ligand and orbitals of a^{\prime} or $a^{\prime \prime}$ symmetry on the $\mathrm{RuL}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ fragment.

[^0]We have recently reported a series of synthetic and structural investigations on vinylidene complexes of the cycloheptatrienylmolybdenum auxiliary $\mathrm{Mo}(d p p e)(\eta$ C, H_{7}) which establish [4] that. in this system, the vinylidene ligand adopts a preferred vertical orientation leading to the conjecture that the $\mathrm{Mo}(\mathrm{dppe})\left(\eta-\mathrm{C}_{9} \mathrm{H}_{7}\right)$ auxiliary might promote electronically preferred ligand orientations which are the converse of those supported by the $\mathrm{RuL}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{9}\right)$ auxiliary. Further to establish this hypothesis, we have prepared the cyclic oxacarbene derivatives $\left[\mathrm{Mo}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right)(\mathrm{dppe})\left(\eta-\mathrm{C}_{7}{ }^{*}\right.\right.$ H_{7})] PF_{6}] ($n=1$ or 2) and crystallographically con. firmed a horizontal orientation of the cyclic oxacarbene ligand in the 2 -oxacyclopentylidene derivative ($n=1$) [5]. Although a number of X-ray crystal structures of carbene derivatives of the $\mathrm{RuL}_{2}\left(\eta{ }^{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)$ auxiliary [69] have been reported, none are direct analogues of [$\mathrm{Mo}\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)($ dppe $\left.)\left(\eta-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\left[\mathrm{PF}_{6}\right]$ and in fact the only example of a cyclic oxacarbene derivative is that of $\left[\mathrm{Ru}\left\{\mathrm{CCH}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right](\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$[9] in which, consistent with theoretical studies on complexes of unsymmetrical auxiliaries MLL' η $\mathrm{C}_{5} \mathrm{H}_{5}$) [10], the plane of the oxacarbene ligand is aligned orthogonal to the $\mathrm{Ru}-\mathrm{P}$ vector. Therefore, to provide a more appropriate and direct comparison with the structure of $\left[\mathrm{Mo}\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)(\mathrm{dppe})(\eta\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)\left[\mathrm{PF}_{6}\right]$, and so demonstrate conclusively the con-
trasting orientational preferences of carbene ligands attached to $\mathrm{Mo}(\mathrm{dppe})\left(\eta-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ and $\mathrm{Ru}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ auxiliaries, we set out to synthesise and crystallographically characterise the complexes $\left[\mathrm{Ru}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n}\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)($ dppe $)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left[\mathrm{IPF}_{6}\right](n=1,1 ; n=2,2)$.

2. Results and discussion

The cyclic oxacarbene complexes [Ru$\left.\left\{\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right)\left(\mathrm{PR}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \mathrm{PF}_{6}\right] \quad(n=1, \mathrm{R}$ $=\mathrm{Me}$ or $\mathrm{Ph} ; n=2, \mathrm{R}=\mathrm{Ph}$). synthesised by reaction of hydroxyalk-1-ynes with $\left.\left[\mathrm{RuCl}^{(} \mathrm{PR}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] /$ $\mathrm{NH}_{4}\left[\mathrm{PF}_{5}\right]$ in methanol, were first reported by Bruce et al. [11". We adopted an identical procedure starting from $\left[\mathrm{RuCl}(\right.$ dppe $\left.)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\mathrm{HC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{OH}$ ($n=1$ or 2) to give the required complexes $\left\{\mathrm{Ru}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right\}(\right.$ dppe $\left.)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{PPF}_{6}\right] \quad(n=1$, 1; $n=2,2$) which were isolated in good yield as white solids. Full details of the characterisation of 1 and 2 by microanalysis, mass spectroscopy, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy are presented in Table 1. The identity of 1 and 2 as carbene complexes is confirmed by characteristic low field triplet resonances in the ${ }^{13} \mathrm{C}$ NMR spectra attributable to the carbene carbon C_{α}. The C_{α} resonance for the 2-oxacyclohexylidene derivative 2 is shifted to low field of that for 1 by approximately 8 ppm , a trend consistent with ${ }^{13} \mathrm{C}$ NMR data for [Mn_{2} $\left.(\mathrm{CO})_{9}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right)\right](n \pm 1$ or 2$)$ [12.13].

The molecular geometries of both 1 and 2 were examined crystallographically to provide a direct comparison between z-oxacyclopentylidene and 2-oxacyc
lohexylidene ligands in otherwise identical complexes. Our studies with the Mo(dppe) η - $\mathrm{C}_{7} \mathrm{H}_{7}$) auxiliary reveal that the 2 -oxacyclohexylidene complex $\left[\mathrm{Mo}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{O}\right)(\right.$ dppe $\left.)\left(\eta-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\left[\mathrm{PF}_{6}\right]$ is formed with some difficulty from the isolable hydroxyvinylidene $\left[\mathrm{Mo}\left(\mathrm{C}=\mathrm{C}(\mathrm{H})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}\right)(\right.$ dppe $)(\eta$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)\left[\mathrm{PF}_{6}\right]$, whereas no corresponding intermediate was observed in the synthesis of the analogous 2oxacyclopentylidene derivative. It was therefore of interest to establish whether, in these sterically congested systems, any structural constraints might be imposed on the formation of the larger six-membered ring. Moreover, a search of the Cambridge crystallographic database uncovered just three previous molecular structure determinations on complexes containing the 2 oxacyclohexylidene ligand [13,14].

The X-ray crystal structures of 1 and 2 (and the crystallographic numbering schemes adopted) are illustrated in Figs. 1 and 2 respectively, and details of important bond lengths and angles are presented in Table 2. The typical geometry of the $\mathrm{Ru}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ auxiliary is exhibited by both 1 and 2 with two phenyl groups of the dppe ligand flanking C_{α} of the oxacarbene ligands. The Ru-P distances ($1,2.267(3)$ and $2.273(3) ; 2,2.285(1), 2.280(1) \AA$) are intermediate between those of $\left[\mathrm{Ru}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](2.240(1)$, $2.250(1) \AA$) [8] and $\left[\mathrm{Ru}\left(\mathrm{C}=\mathrm{CPh}\left(\mathrm{C}, \mathrm{H}_{7}\right)\right)(d \mathrm{dppe})(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left[\mathrm{PF}_{6}\right](2.298(2), 2.305(2) \AA)[15]$ consistent with the relative π-acceptor capacities of alkynyl, carbene and vinylidene ligands [8]. The $\mathrm{Ru}=\mathrm{C}_{\mathrm{f}}$ distances (1, $\mathrm{Ru}=\mathrm{C}(3) 1.92(1) ; 2, \mathrm{Ru}=\mathrm{C}(3) 1.938(4) \mathrm{A})$ are comparable with those of the methoxy-carbene complexes $\left[\mathrm{Ru}\left(\mathrm{C}(\mathrm{OMe}) \mathrm{CH}_{3} \mathrm{Ph}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHMeCH}_{2} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{-}$

Table 1
Meroanalyticd and spectroseople data

	1	2
Analysis (\%) ${ }^{\text {d }}$	C $53.9(53,9) \mathrm{H} 4.8(4,5)$	C 54.7(54.5) H 4.7 (4.7)
Mass spectral data ${ }^{b}$	$\left.635\left(\mathrm{M}^{+}\right) .505\left(\mathrm{M}-\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)^{+}\right)$	$649\left(M^{+}\right) .565\left(\left[M-\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{\circ}\right)$
'H NMR data $(8) \mathrm{e}$		7.85-7.27 (m. $20 \mathrm{H} . \mathrm{Ph}$. dppe); 5.18 (s. 5H, $\mathrm{C}_{5} \mathrm{H}_{5}$); 3.09 ($\mathrm{t}, 2 \mathrm{H}$) and $3.00(\mathrm{t}, 2 \mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{2}\right.$ and $\left.\mathrm{C}_{13} \mathrm{Ht}_{3}\right)$; 3.09 and 2.77 (m, 4H. CH, dppe); 1.16 (q, 2H) and 0.78 (q, 2H) ($\mathrm{C}_{\mathrm{v}} \mathrm{II}^{2}$ and $\mathrm{C}_{5} \mathrm{H}_{\text {. }}$)
"C NMR data (8):	 $90.4\left(\mathrm{C}_{3} \mathrm{H}_{3}\right) ; 81.0\left(\mathrm{C}_{3}\right) ; 59.0\left(\mathrm{C}_{4}\right): 29.0\left(\mathrm{vt}, \mathrm{CH}_{2}\right.$, dppe $)$ $22.4\left(\mathrm{C}_{v}\right){ }^{\mathrm{c}}$	304.4 (1, $\mathrm{C}_{11}, J\left[\mathrm{C}_{\mathrm{cr}}=\mathrm{P}\right]$ 12.6); 141.1=129.0(Ph , dppe): $91.2\left(\mathrm{C}_{3} \mathrm{H}_{5}\right): 73.6\left(\mathrm{C}_{4}\right) ; 54.0\left(\mathrm{C}_{13}\right) ; 29.3\left(\mathrm{CH}_{2}, \mathrm{dppx}\right) ;$ 21.2 and $17.4\left(\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{8}\right)$
"P NMR data (8) ${ }^{\mathrm{s}}$	91.5.s	$93.2, \mathrm{~s}$

[^1]

Fig. I. Molecular structure of complex 1 showing the crystallographic numbering scheme (hydrogen atoms and PF_{6} counter anion omitted for clarity).

Fig. 2. Molecular structure of complex 2 showing the crystallographic numbering scheme (PF_{6} counter anion omitted for clarity).

Table 2
Selected bond lengths (\mathcal{A}) and angles (deg) for complexes 1 and 2

1		2	
RumP(1)	$2.267(3)$	$\mathrm{Ru}=\mathrm{P}(1)$	$2.285(1)$
$\mathbf{R u}=\mathbf{P}(2)$	$2.273(3)$	$\mathrm{Ru}-\mathrm{P}(2)$	2.280 (1)
$\mathrm{Ru}=\mathrm{C}(3)$	1.92(1)	$\mathrm{Ru}-\mathrm{C}(3)$	$1.938(4)$
$\mathrm{P}(1) \mathrm{C}$ (1)	1.83(1)	P(1)-C(1)	1.839(4)
$P(1)=C(7)$	1.86(1)	P(1)-C(14)	1.829(4)
$\mathrm{P}(1)=\mathrm{C}(13)$	1.827(9)	$\mathrm{P}(1) \mathrm{C}(8)$	1.816(4)
$P(2)=C(2)$	$1.85(1)$	$\mathrm{P}(2) \mathrm{C}(2)$	1.833(4)
P(2)-C(19)	1.83(1)	$\mathrm{P}(2)-\mathrm{C}(36)$	1.829(4)
P(2)-C(25)	1.81(1)	$\mathrm{P}(2)-\mathrm{C}(20)$	1.816(4)
C(3) $-0(1)$	$1.32(1)$	$C(3)=O(1)$	1.314(5)
O(1) $\mathrm{Cl}(6)$	$1.46(1)$	O(1) $\mathrm{C}(7)$	1.463(6)
C(3) $=(4)$	$1.51(1)$	$\mathrm{C}(3)=\mathrm{C}(4)$	1.497(6)
C(4)-C(5)	$1.51(2)$	C(4)-C(5)	$1.515(8)$
C(5)-C(6)	1.48(2)	C(5)-C(6)	1.477(9)
		$C(6)-C(7)$	1.457(8)
$C p^{\prime}-\mathrm{Ru}$-C(3) ${ }^{\text {a }}$	124	$\mathrm{Cp}-\mathrm{Ru}-\mathrm{C}(3){ }^{\text {a }}$	124
P(1)-Ru-P(2)	83.4 (1)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	82.99(4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(3)$	88.2(3)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(3)$	86.7(1)
$\mathbf{P (2) - R u - C (3) ~}$	91.3(3)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(3)$	92.4(1)
Ru-P(1)-C(1)	109.0(4)	$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(1)$	109.5(1)
Ru-P(1)-C(7)	116.7(4)	$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(14)$	119.5(1)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(13)$	116.6(3)	$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(8)$	117.2(1)
Ru-P(2)-C(2)	109.3(4)	$\mathrm{Ru}=\mathrm{P}(2)-\mathrm{C}(2)$	110.3(1)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(19)$	116.2(4)	$\mathrm{Ru} \mathrm{m}_{\mathrm{P}}^{\mathrm{P}}(2)=\mathrm{C}(26)$	117.1(1)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(25)$	115.5(4)	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(20)$	$117.5(1)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	111.2(9)	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.0(3)
$\mathrm{P}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	110.8(9)	P(2)-C(2)-C(1)	109.3(3)
Ru-C(3)-O(1)	126.5(7)	Ru - $\mathrm{C}(3)-\mathrm{Cl}(1)$	123.1(3)
$\mathrm{Ru}-\mathrm{C}(3)-\mathrm{C}(4)$	127.1(8)	$\mathrm{Ru}-\mathrm{C}(3)-\mathrm{C}(4)$	125.1(3)
$\mathrm{O}(1) \mathrm{C}(3)-\mathrm{C}(4)$	106.3(9)	O(1)-C(3).C(4)	$111.7(4)$
$\mathrm{C}(3)=\mathrm{C}(4)-\mathrm{C}(5)$	105.0(10)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	113.4(5)
C(4) $\mathrm{C}(5) \ldots \mathrm{C}(6)$	106.0(10)	C(4)-C(5)-C(6)	113.2(5)
$\mathrm{O}(1) \mathrm{CC}(6)-\mathrm{C}(5)$	104.0(10)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$111.5(5)$
		C(5)-C(6)-C(7)	111.7(5)

[^2][PF_{6}] 3 [6] and $\left[\mathrm{Ru}(\mathrm{C}(\mathrm{OMe}) \mathrm{R})\left(\mathrm{PPh}_{3}\right)_{2}\left(\boldsymbol{\eta}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ [$\left.\mathrm{PF}_{6}\right](\mathrm{R}$ $=\mathrm{Me}, 4[7], \mathrm{R}=\mathrm{Et}, 5[81),\left(\mathrm{Ru}-\mathrm{C}_{\alpha}(\mathrm{A}), 3,1.93(2) ; 4\right.$, 1.931(9); 5, 1.959(6)) with the $\mathrm{Ru}-\mathrm{C}_{\alpha}$ bond apparently longer for the six-membered ring complex 2 than for the five-membered analogue 1 (a trend consistent with $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{9}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{O}\right)\right](n=1$ or 2$\left.)[12,13]\right)$, although e.s.d.s preclucie a definitive conclusion on this point. However, the principal structural features of interest in $\mathbf{1}$ and $\mathbf{2}$ are associated with the orientation and conformation of the oxacarbene ligands.

In both 1 and 2 the cyclic oxacarbene ligands adopt an essentially vertical orientation with the oxygen directed 'down' away from the cyclopentadienyl ring; these features are in common with the methoxy-carbene derivatives 3-5. A more precise measure of carbene ligand orientation is provided by the dihedral angle θ between planes defined by $\left(\mathrm{Cp}^{\prime}-\mathrm{Ru}-\mathrm{C}_{\alpha}\right)$ and $\left(\mathrm{O}-\mathrm{C}_{\alpha}-\right.$ C_{β}) (in 1 and 2. ($\mathrm{Cp}^{\prime}-\mathrm{Ru}-\mathrm{C}(3)$) and ($\mathrm{O}-\mathrm{C}(3)-\mathrm{C}(4)$), $\mathrm{Cp}^{\prime}=$ centroid of the cyclopentadienyl ring). An increase in the magnitude of θ is generally accounted for
by steric factors which lead to a twisting of the carbene ligand away from the electronically preferred vertical orientation. In fact, the calculated values of $\boldsymbol{\theta}\left(1,4^{\circ} ; \mathbf{2}\right.$, 6°) are small by comparison with those of $3,\left(16^{\circ}\right.$, reported) and $5,\left(17.5^{\circ}\right.$, calculated from atomic coordinates) suggesting that both oxacarbene ligands are relatively sterically undemanding with no significant difference between five- and six-membered rings. Both carbene rings exhibit folded conformations. The fivemembered ring of 1 adopts an envelope configuration [16] with a dihedral angle of 18.6° between planes defined by ($\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$) and ($\mathrm{C}(4)-\mathrm{C}(5)-$ $\mathrm{C}(6)$). The unexpected boat conformation of the sixmembered ring of 2 is clear from an inspection of Fig. 2 , with the atoms $\mathrm{C}(4)$ and $\mathrm{C}(7)\left(\mathrm{C}_{\beta}\right.$ and C_{e}) occupying the flagpole positions; deviations from the ideal boat conformation are small, as evidenced by torsion angles (C(4)-C(3)-O(1)-C(7)) $2.6(6)^{\circ}, \quad(C(4)-C(5)-C(6)-$ $C(7))-3.1(8)^{\circ}$ and the co-planarity of $\mathrm{O}(1), \mathrm{C}(3), \mathrm{C}(5)$ and $\mathbf{C}(6)$ (mean deviation from plane $0.007 \AA$). The

Table 3
Crystal and data collection paramelers for complexes 1 and 2

	1	2
Crystal dala		
Formula	$\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{OP}_{3} \mathrm{Ru}$	
Mass	779.64	793.67
Crysulal system	monoclinic	monoclinic
Crystal colour, habit	colourless, prismatic	colourless, prismatic
Space group	$P Z_{1} / n($ no. 14)	$\mathrm{P}_{2} / \mathrm{fc}$ (no .14)
4 (A)	13.109(5)	$9.747(2)$
$b(A)$	15,685(5)	14.646(4)
$e(A)$	$16.791(7)$	24,020(3)
$\theta(\mathrm{deg})$	98.14 (3)	98.36(1)
Volums V ${ }^{(1}{ }^{\prime}$)	$3418(2)$	$3393(1)$
	25	21
No, of molecules in unit eell $\%$	4.	4
Density $D_{\text {cale }}\left(\mathrm{gem}^{-1}\right)$ $\boldsymbol{H}(000)$	1.515	1.553
$\boldsymbol{r}(000)$ $\mu\left(\mathrm{cm}^{-1}\right)$	1584	1616
	6.46 (MoK ${ }^{\text {a }}$) $0.12 \times 0.22 \times 0.65$	6.52 (MoKa)
Data collection/reduction $0.7 \times 0.27 \times 0.39$		
Diffractometer	Rigaku AFC6S	Rigaku AFCSR
Radiation, $A(A)$ 2θ range (deg)	Mo Ka, 0.71069	Moka, 0.71069
Scan type	$1.0-50.0$ $\omega-2 \theta$	1.0-50.1
Scan width (deg) Total data	$(1.00+0.30 \tan \theta)$	$(1.05+0.30 \tan \theta)$
Total data Unique data	6357	6677
-Observed' data ($/>3 \mathrm{rr}(1)$), N_{0}	6066	6284
Solution und refinement	3285	4869
Structure solution Reffinenuent	Direct methods	Patterson methods
Reflnentert Least squares variables, N	Full-matrix least spuares	Full-matrix least squares
$\mathrm{R}^{\text {Least squares variables, } N_{*}}$	415	424
$\mathbf{R}_{4}{ }^{\text {a }}$	0.061	0.035
Goodness of fit S^{*}	2.62	0.040
Difference map features ($\mathrm{c}^{\text {- }}$ - ${ }^{\text {) }}$	$+0.80,-0.68$	2.26 $+0.56,-0.38$

Table 4
Atomic coordinates for complex 1

Atom	x	y	$=$	Atom	x	y	z
Rul	$0.49117(6)$	0.14551(5)	0.18843 (5)	Cl 4	0.4430(8)	0.4332(7)	0.2362(7)
Pl	0.4245(2)	0.2754(2)	6.152 (2)	Clis	0.499(1)	0.4971(8)	0.2808(7)
P2	0.324*(2)	0.1126(2)	$0.1973(2)$	C16	$0.603(1)$	0.4965(8)	0.2895(8)
P3	0.4316(3)	$0.1998(2)$	$0.6608(2)$	Cl 7	0.652(1)	0.432(1)	0.255(1)
F1	0.5148(9)	0.194 (1)	$0.7327(7)$	C 18	0.5973(8)	0.3664(7)	0.2118(9)
F2	$0.3466(8)$	$0.215(1)$	$0.7129(6)$	C19	0.2955(9)	0.0861(7)	0.2984(7)
F3	$0.449(1)$	0.2918(6)	0.6041)	C20	0.361(1)	$0.0311(8)$	0.3447(7)
F4	$0.41011)$	$0.1013(7)$	0.658(1)	C21	0.346 (1)	0.012(1)	$0.424(1)$
F5	0.512(1)	0.188(1)	$0.6073(7)$	C22	0.262(2)	0.052(2)	0.454(1)
F6	0.34634)	0.2069(7)	$0.5865(6)$	C23	0.201(2)	$0.107(1)$	0.407(2)
01	0.4503(5)	0.2336(5)	$0.3330(4)$	C24	$0.215(1)$	$0.1210(8)$	0.331 (1)
Cl	$0.2926(8)$	0.281097)	$0.1756(7)$	C25	0.272(1)	0.023(1)	$0.1375(8)$
C2	$0.241(1)$	$0.203018)$	0.160011	C26	$0.300(1)$	-0.057(1)	0.157(1)
C3	0.5131(8)	$0.1848(7)$	0.2977 (6)	C27	0.275(2)	-0.128(1)	$0.109(1)$
C4	$0.605(1)$	0.166(1)	$0.3607(8)$	C28	0.220(2)	-0.121(2)	0.038(2)
C5	$0.595(1)$	0.227(1)	0.4288(9)	C29	$0.178(2)$	-0.042(2)	0.017(1)
C6	$0.487(1)$	0.255(1)	$0.4165(7)$	C30	$0.206(2)$	0.031(1)	0.064(1)
C7	0.4129(8)	$0.3033(7)$	$0.0437(6)$	C31	0.529 (1)	0.069(2)	0.084(1)
C8	0.422(1)	0.3869(8)	$0.0193(8)$	C32	$0.544(1)$	0.0190(8)	$0.153(1)$
C9	0.412(1)	$0.40411)$	-0.069(1)	C33	0.622(1)	0.050(1)	0.200 (1)
C10	$0.394(1)$	$0.341(1)$	-0.11778)	C34	0.656 (1)	0.127(1)	$0.106(1)$
ClI	0.383(1)	$0.258(1)$	-0.094(7)	C35	0.595(2)	$0.135(1)$	$0.096(1)$
Cl2	$0.390(1)$	$0.2402(8)$	-0.0128(7)				
Cl 3	0.4906(8)	$0.3676(5)$	0.292066				

Table 5
Acomic coordinates for counglex 2

Atom	\star	y	=	Abam	x	y	z
Ru!	0.46686(3)	0.2826882)	0.5880711	C 14	0.1625(4)	0.4170(3)	0.5885(2)
Pl	$0.24993(1)$	$0.3693448)$	0.6092駺4	Cl 5	$0.228665)$	0.4893(3)	0.5669(2)
P2	0.53366 1)	$0.32757(8)$	0.6788845	C16	$0.1605(5)$	$0.5709(3)$	$0.5536(2)$
P3	0.2064 2)	0.1477 (1)	0.30374619	Cl 7	0.0263(6)	0.5811 (4)	0.5622(2)
F1	$0.3593(4)$	$0.1782(3)$	0.359421	C 18	-0.0420(5)	0.5104(4)	0.5839(2)
F2	0.2586(4)	$0.0974(2)$	(1.4210 ${ }^{\text {a }}$	C19	0.0250(4)	0.4290 (3)	0.5968(2)
F3	0.2304(5)	0.0580(2)	(0.3305(2)	C20	0.6180(4)	0.2434(3)	0.7277(2)
F4	$0.0552(4)$	$0.1160(3)$	(154941)	C21	0.6031(5)	0.2412(3)	0.7835(2)
F5	0.157(5)	$0.1981(3)$	0.30681	C22	0.6781(6)	$0.1796(4)$	0.8190(2)
F6	0.185541	0.2369(2)	(103976	C 23	$0.7678(6)$	$0.1201(4)$	0.7996 (2)
O1	0.3940(3)	$0.1344(2)$	$0.6566{ }^{1}$	C24	$0.7820 \times 5)$	$0.1207(4)$	0.7445(2)
Cl	0.2569(4)	$0.3145(3)$	06860 21	C25	0.7070(5)	0.1816(3)	0.7089(2)
C2	0.3840 (4)	$0.3701(3)$	(0.70933 2)	C26	0.6552(4)	$0.4231(3)$	0.6904(2)
C3	0.4419(4)	$0.1572(3)$	0.610121	C27	0.7870(5)	0.4144(3)	0.7200(2)
C4	$0.4786(6)$	0.0750(4)	0.5784, 29	C28	0.8741(5)	0.4889(4)	0.7290(2)
C5	0.3693 (8)	0.0007(4)	0.573813	C29	$0.8317(6)$	0.5729(4)	0.7084(2)
C6	$0.3161(7)$	-0.0168(4)	(6.637133)	C30	0.7004(6)	0.5836(3)	0.6788(2)
C7	$0.387517)$	0.0385 (4)	0.673012	C31	0.6141(5)	0.5089(3)	0.6701(2)
C8	0.1170441	$0.2251(3)$	6.586721	C32	0.6223(5)	0.2508(4)	0.5302(2)
C9	$0.0957(4)$	$0.2012(3)$	0.5102821	C33	0.6567(5)	0.3343(4)	0.5568(2)
C10	-0.0005 51	$0.1358(3)$	0.5099221	C34	0.5509(5)	$0.3969(3)$	0.5391(2)
C11	-0.9736(5)	$0.0917(3)$	05*6921	C35	0.4492(5)	0.3498(3)	0.5025(2)
C12	-0.054 (5)	0.1143 3)	0.60272	C36	0.4922(5)	0.2602(3)	0.4964(2)
C13	0.0403(5)	0.1810(3)	0.6223621				

relatively high energy boat conformation adopted by the 2-oxacyclohexylidene ligand of 2 may, at first, appear difficult to rationalise, but there is a clear precedent in the structure of six-membered lactone rings [17] where the requirement for a planar $\mathrm{C}-\mathrm{C}(\mathrm{O})-\mathrm{O}-\mathrm{C}$ arrangement imposes a boat conformation. Drawing parallels between the lactone ring $\mathrm{C}-\mathrm{C}(\mathrm{O})-\mathrm{O}-\mathrm{C}$ and oxacarbene $\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}(\mathrm{Ru})-\mathrm{O}-\mathrm{C}_{\mathrm{f}}$ fragments suggests a requirement for co-planarity of the atoms $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(7)$ in 2 (mean deviation from plane $0.011 \AA$); similarly, in 1 the atoms $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(6)$ exhibit a mean deviation of just $0.006 \AA$ from a plane. Re-examination of the structural data for $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{9}\left(\mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{R}) \mathrm{O}\right)\right]$ ($\mathrm{R}=\mathrm{H}$ or Me) [13] suggests that, here as well, the atoms $\mathrm{C}_{\beta}-\mathrm{C}_{\mathrm{w}}-\mathrm{O}-\mathrm{C}_{e}$, (C(29)-C(25)-O(25)-C(26)) of the 2 -oxacyclohexylidene ligand maintain co-planarity (torsion angles (C(29)-C(25)-O(25)-C(26)), $R=H$, $\left.1.0(12)^{\circ} ; \mathrm{R}=\mathrm{Me},-0.8(9)^{\circ}\right)$ but the co-planarity of $\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}-\mathrm{C}_{5}-\mathrm{C}_{\varepsilon}, \quad(\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$) is less well controlled with torsion angles (C(29)-C(28)-$\left.C(27)-C(26)), \quad R=H, 32.9(19)^{\circ} ; R=M e, 7.0(15)^{\circ}\right)$. However, from the data currently available, it appears that severe limitations are placed upon the conformational flexibility of the 2 -oxacyclohexylidene ligand which, in sterically congested environments, may indeed impose some interesting structural constraints.

3. Experimental

3.1. General procedures

The preparation and purification of the complexes described were carried out under dry nitrogen, and solvents were dried and purified by standard methods. The complex [RuCl(dppe) $\left.\eta_{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] was prepared by the literature procedure [18] and the chemicals dppe and $\left.\mathrm{HCasClCH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{OH}(n=1$ or 2) obtained from Lancaster Synthesis. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC 300 E or Varian Assceiates XL 300 spectrometers, $122 \mathrm{MHz}{ }^{31} \mathrm{P}$ NMR spectra on the Varian Associates XL 300 and mass spectra using a Kratos Concept IS. Microanalyses were by the Microanalytical Service of the Department of Chemistry, University of Manchester.

3.2. Preparations

$\left[\mathrm{Ru}\left(\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)(\mathrm{d} p \mathrm{ppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ 1. A mixture of $\left[\mathrm{RuCl}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.46 \mathrm{~g}, 0.77 \mathrm{mmol})$, $\mathrm{NH}_{4}\left[\mathrm{PF}_{6}\right](0.15 \mathrm{~g}, 0.92 \mathrm{mmol})$ and 3 -butyn $1-$ ol $(0.41 \mathrm{~g}$. 5.85 mmol) in methanol ($50 \mathrm{~cm}^{3}$) was refluxed for 3 h to give a very pale yellow solution. After filtration, the volume was reduced and diethyl ether added to precipitate 1 as a white solid which was collected and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether; yield 0.32 g (54%).

Complex 2 was prepared in 74% yield by an identical procedure starting from $\left[\mathrm{RuCl}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.360 \mathrm{~g}$, $0.60 \mathrm{mmol}), \mathrm{NH}_{4}\left[\mathrm{PF}_{6}\right](0.117 \mathrm{~g}, 0.72 \mathrm{mmol})$ and 4 -pentyn-1-ol $(0.384 \mathrm{~g}, 4.57 \mathrm{mmol})$.

3.3. X-ray crystal structure analyses of complexes 1 and 2

The majority of details of the structure analyses carried out on 1 and 2 are given in Table 3; non-hydrogen atom positional parameters for $\mathbf{1}$ and $\mathbf{2}$ are listed in Tables 4 and 5 respectively. Colourless crystals of 1 were obtained by slow diffusion of a diethyl ether layer into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex, whilst colourless crystals of 2 were grown by vapour diffusion of diethyl ether into an acetone solution of $\mathbf{2}$. Cell dimensions for 1 were determined from the setting angles of 25 carrfully centred reflections in the range $14.47<20$ $<22.23^{\prime}$ and for 2 from 24 carefully centred reflections in the range $30.35<2 \theta<38.34^{\circ}$. Empirical absorption corrections based on azimuthal scans were applied to the data for 1 and 2 (resulting in transmission factors of 0.90 tc. 1.00 for 1 and 0.97 to 1.00 for 2) and in each case the data were also corrected for Lorentz and polarisation effects. Linear decay corrections were applied to the data for 1 and 2, based in each case on the intensities of three representative reflections which were measured after every 150 reflections and declined by -0.8% for 1 and -0.6% for 2 . Non-hydrogen atoms were refined anisotropically. For 1, hydrogen atoms were included in the structure factor calculation in idealised positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and were assigned isoropic thermal parameters which viere 20% greater than the equivalent B value of the atom to which they were bonded; for 2 , hydrogen atoms were included but not relined. For 1, $w=4 F_{0}^{2} / \sigma^{2}\left(F_{0}^{2}\right)$ with a p factor of 0.03 to downweight strong reflections, whilst for 2, $w=1 /\left[\sigma_{\mathrm{c}}{ }^{2}\left(F_{\mathrm{o}}\right)+\left(p^{2} / 4\right)\left(F_{0}^{2}\right)\right]$ with a p factor of 0.0070. Neutral atom scattering factors were taken from Ref. [19] and all calculations were performed using the TEXSAN crystallographic software packages of Molecular Structure Corporation [20]. Crystallographic data for this work has been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

We are grateful to the EPSRC for the award of Research Studentships (to R.W.G. and Z.I.H.) and to Dr. P. Quayle for helpful discussions.

References

[1] S.G. Davies, !.P. McNally and A.J. Sinallridge, Adv. Organoner, Chem. 30 (1990) I.
[2] M.I. Bruce, Chem. Rev., 97 (1991) 197.
[3] N.M. Kostic and R.F. Fenske. Orgamometallics, / (1982) 974.
[4] R.L. Beddoes, C. Bitcon, R.W. Grime, A. Ricalton and M.W. Whiteley, J. Chem. Soc. Dalton Trans., (1995) 2873.
[5] R.L. Beddoes, R.W. Grime, Z.I. Hussain and M.W. Whiteley. J. Chem. Soc., Dulton Trans., (1996) 3893.
[6] G. Consiglio, F. Morandini, G.F. Ciani and A. Sironi, Organometallics, 5 (1986) 1976.
[7] M.I. Bruce, G.A. Koutsantonis and E.R.T. Tiekink, Acta Crysrallogr. Sect. C. 44 (1988) 1130.
[8] M.I. Bruce. M.G. Humphrey, M.R. Snow and E.R.T. Tiekink, J. Organomet. Chem., 314 (1986) 213.
[9] P. Nombel, N. Lugan and R. Mathieu, J. Organomet. Chem., 503 (1995) C22.
[10] B.E.R. Schilling, R. Hoffmann and J.W. Faller, J. A:n. Chem. Soc., 101 (1979) 592.
[11] M.I. Bruce, A.G. Swincer, B.J. Thomson and R.C. Wallis, Aust. J. Chem, 33 (1980) 2605.
[12] J.-A.M. Gamer, A. Irving and J.R. Moss, Organometallics, 9 (1990) 2836.
[13] J.-A.M. Andersen, S.J. Archer, J.R. Moss and M.L. Niven, Inorg. Chim. Acta, 206 (1993) 187.
[14] C. Kclley, N. Lugan, M.R. Terry, G.L. Geoffroy, B.S. Haggerty and A.L. Rheingold, J. Am. Chem. Soc., JI4 (1992) 6735.
[15] M.I. Bruce, C. Dean, D.N. Duffy, M.G. Humphrey and G.A. Koutsantonis, J. Organomet. Chem., 295 (1985) C40.
[16] H. Adams, N.A. Bailey, M. Grayson, C. Ridgway, A.J. Smith, P. Taylor and M.J. Winter, Organomerallics, 9 (1990) 2621.
[17] J.F. McConnell, A.McL. Mathieson and B.P. Schoenborn, Tetrahedron Lett., (1962) 445.
[18] G.S. Ashby, M.I. Bruce, I.B. Tomkins and R.C. Wallis. Aust. J. Chem., 32 (1979) 1003.
[19] D.T. Cromer and J.T. Waber, International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974.
[20] TEXSAN-TExRAy, Siructure analysis package, 1985 (Molecular Structure Corporation, The Woodlands, TX).

[^0]: ${ }^{\circ}$ Corresponding author.

[^1]: ${ }^{*}$ Calculated values in parentheses, ${ }^{n}$ By FAB mass spectroscopy, mfe values bused on ${ }^{162}$ Ru. ${ }^{c}$ s as singlet, 1 en triplet. vt we virtuan triplet. $y \equiv$ quinte, m e multiples coupling constanss J in hern: in acetone of, unless stated otherwise; ring lettering system as in diagrams below, In CDCl_{1} " ${ }^{\text {In }} \mathrm{CD}_{2} \mathrm{Cl}_{2}$.

[^2]: ${ }^{\text {a }} \mathrm{Cp}$ ' represents the centroid of the cyclopentadienyl ring.

